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Abstract

Decoherence and dissipation in quantum systems has been studied extensively in the

context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum

systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann

to address the Quantum Measurement Problem. Although these models can yield very

general classical phenomenology, they are incapable of reproducing relevant characteristics

expected of a local environment on a quantum system, such as the characteristic dependence

of decoherence on environment spatial correlations. I discuss the characteristics of Quantum

Brownian Motion in a local environment by examining aspects of first principle calculations

and by the construction of phenomenological models. Effective quantum Langevin equations

and master equations are presented in a variety of representations. Comparisons are made

with standard results such as the Caldeira-Leggett master equation.

1 Introduction and Motivation

Decoherence via coarse graining has been studied in the context of quantum measurement theory

by Zurek[1] and by Hartle and Gell-Mann[2] as a mechanism which leads to the emergence of clas-

sical properties. Recent efforts have focused on the decoherence effects of a heat bath, which has

also been examined in detail in the study of quantum brownian motion. Decoherence is identified

as the (effective) suppression of interference terms in the density operator (p(x, x'), x _ x'). It has

been pointed out that most of the models which have been considered are somewhat simplistic and

cannot reproduce the phenomenological features expected of a system which interacts locally with

a homogeneous and isotropic environment[3]. In this paper I describe the perceived shortcomings

of existing models and illustrate the construction of a phenomenological quantum master equation

which contains many features expected from local coupling to a homogeneous environment[4].

Although decoherence is the most interesting feature of the effects of a heat bath, dissipation

(and other effects) also generally appear in the dynamics of the density operator:

Op(x, x'; t)
-- Hamiltonian terms + Dissipation terms + .... g(x, x_)p(x, x'; t). (1)ot

The decoherence term appears as a (spatially dependent) decay term in the evolution equation,

and can be understood in terms of effective fluctuating forces, or potentials: [5, 6]

g(z,y) -- (1)(c(x;x) + c(y;y)- 2c(x;y), (V(x,t)V(y,s)) = c(x;y)5(t- s). (2)
tl,
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Typical models have a quadratic form, 9(x, y) cx (x - y)2 for the decoherence term, corresponding

to a fluctuating force which is independent of position. However, for a local bath one expects
the correlation function to die off at some characteristic length scale (the correlation length of

the environment), which has some important ramifications for decoherence. For a quadratic form

of decoherence, the decay rate of the interference terms in the density matrix increases without

bound, while for a local model the decay rate saturates at separations (between x and x r) much

larger than the correlation length of the environment, reflecting the independence of environment

fluctuations at large separations. As it turns out, the quadratic form can be considered a short

length scale approximation of a more detailed model.
To consider the decoherence effects of an environment, simultaneous treatment of dissipation

is necessary since decoherence and dissipative effects both generally arise from the same source

(the interaction with a heat bath). For simplicity, I consider only linear dissipation, that is

77
m:k=p, 15=---p+F. (3)

m

As an example of quantum dissipative evolution, Dekker[7] has constructed a phenomenological

master equation which includes ohmic dissipation and quadratic decoherence:

_ (D_ + Dp_) D_x. , Dw "x,
Op _h[H,p]-i_[x,{p,p}] + h2 [z,[P,P]]---_-lP [P,P]]---_-I [x,p]]. (4)Ot

The Caldeira-Leggett [8] master equation is obtained from a first-principle calculation for the effects

of a simple thermal bath. With an appropriate choice of parameters for the Dekker model, the

Calderia-Leggett master equation can be reproduced.

Many open system models can reduce to the same classical phenomenology, particularly in the

Markov regime, and yet have significant differences for a quantum sytem in that same regime. To

illustrate this "richness" of quantum dissipative models, consider a rather generic oscillator bath

model (following Zwanzig[9]):

L = 2m:i: 2 - U(x) + _ ---ff-mu'[%'2_ _o_(qu - a_,(x))2]. (5)

The classical calculations (the results of which are presumably reproduced in at least some limit of

the quantum model) are relatively straightforward. The classical fluctuation-dissipation relation

between the fluctuating forces and the nonlinear dissipation kernal emerges naturally, and in the

usual Markov limit becomes:

(fi(x, t)fj(y, s)) = kBTrhj(x, y;t - s) = _,j(x, y)2kBT6(t - s), (6)

and a simple langevin equation can (at least in principle) be obtained:

OU(x(t))Ox, + - (7)

For a homogeneous environment, the dissipation constant would be independent of position.

Some observations about the Markov limit are in order. For the classical picture, the spatial

correlations of the fluctuating forces are irrelevant. After all, the particle can only be in one place
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at one time. For a quantum systemone must considersuperpositionsbetween the particle at
different locations, i.e. superpositionsbetweendifferent trajectories for the particle. My point is
that different models may producethe sameclassicalphenomenology,but have some important
differencesfor the quantumcase,in particular for the effectivedecoherencedueto the environment.

In order to help motivate somechoiceswhich will be requiredfor the construction of the new
model, consider a particle locally coupled to a scalar field. This particular model is a natural
extensionof one consideredby Unruh and Zurek[10].The action for this model is given by:

(8)

This model produces approximately ohmic dissipation in one dimension[8, I 1]. In addition, one can

extract from the influence functional the effective correlation function of the fluctuating forces[5,
11]:

}< F(x, T)" F(y, s) > 0 = 2(27r) J / ddkk 2 cos(_ot) cos(k • (x - y)) . (9)

This correlation function results from independent contributions from each mode of oscillation of

the field. With some of the characteristics suggested by this local environment in mind, I now

turn to the actual construction of the model.

2 The Phenomenological Model

The initial form of the evolution of the density operator is taken to be in the Lindblad[12] form
(Schr6dinger picture):

cgp LID] = 1 H 2-_ 1c9--[= _[ ,pl + E[Gp, V_} + [V_,,pVt_] = --_[H,p] + AL[p], (10)
t_

for which there is a corresponding form for the Heisenberg picture L* [O] which can readily be

obtained from the cyclic properties of the trace. For a finite dimensional Hilbert space, this form

is the most general for a completely positive dynamical semigroup. For infinite dimensional Hilbert

spaces, it is a reasonable starting point. I will be focusing on the nonunitary part of the evolution,
AL.

The construction of the model is essentially the determination of the operators Vu, subject to

the constraint that the dissipation is ohmic (expressed as an operator condition). This constraint

produces the "correct" classical phenomenology, but does not completely determine the model.

However, linear dissipation almost forces the V_, to be at most linear in momentum, that is

V, = Au(x ) - B,(x) • p. (ll)

Homogeneity and isotropy also serve to constrain the model. Assuming some sort of mode by

mode interaction with a field, a reasonable choice is given by:

{Vu} = {o_(k)e ik'x _ fl(k)eikxk . p}. (12)
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The discrete index # has been replaced by the continuous index k. The model is then completely

specified by the complex functions a and f_.

The resulting nonunitary contribution to the Schr6dinger equation is given by the expression:

AL[p] = - f_k_(p-e_k'xpe -'k'x) -- fdak_l_h2(½{(k" p)2,p} _ e,k.xk, ppk-pe-_k.x)
* k *

_ fddk_[o¢_ _t )J(e,k.X{k.p,p}_-,k.x) _ fddk"ml_t_ _(*)J(e,k.X[k.p,p]e-,k.*). (13)

The position representation of the new model is given by:

Op(x,x'; t)
Ot .°iltoni°term,- cosk,---'>>),,--','>

-(_/dkRe[a'(k).(k)]ksink(x-x'))(Ox _-x,)P(X,X';')

0

-(i/dkIm[a'(k)/3(k)]ksink(x-x'))(O+-_)p(x,x';t)

+0" ,',-')(2,:-;.),.-.';,>
(°)+(r p(x,x';t). (14)

The first nonhamiltonian term is responsible for decoherence. The corresponding noise spatial

correlation is determined by a(k). The characteristic length should be on the order of the inverse

of the "width" of la(k)l 2 in k space. The second nonhamiltonian term is responsible for the

dissipation. Clearly the dissipation and other terms are more complicated in this new model.

However, that would also be expected from a more elaborate first principle calculation.

By examining the Eherenfest relations of physical quantities using L", some interesting physical

features of the new model emerge. By construction, the average position and momentum obey

relations corresponding to ohmic dissipation:

dt - _([H,P])- _ - _<[H,x])---, (15)

where

p * 2
rj_ k2Re(a (k)/3(k))k.

?Yt--
(16)

With only limited constraints on a and B (7 must be positive), the kinetic energy is seen to be

thermalized:

d ((P 2 kBT i (p2 kBT p2 kBT
2m 2 )>= (_[H, 2m -2 )])-'_((_m 2 )>' (17)

where

/d uk_ kBT _ 1 [ddk la(k)12hk2. (18)"7----27] - hk4' 2 - J 2m
m "7

The effective temperature is determined by a and f_.
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A low length scale approximation of the new model can be obtained by expanding the expo-

nential terms in powers of k. x:

AL[p] ="- - fd%l (k)?B¢ [k p]]
J 2h '--'x' [k.x,p]] -/dd__L K.p, .p,

/ddk iRe(°t(k)h'fl(k)) [k. x , {k. P,P}I +/_kIm(°_(k: "fl(k)) [k. x, [k. p,p]]. (19)

The lowest nonvanishing terms are second order, which exactly reproduces the Dekker master

equation for 1 dimension. As a result, we can think of the Dekker or Caldeira-Leggett equations

as a low length scale approximation for more general models.

On the other hand, the Caldeira-Leggett master equation,

ykBT
AL[p] - i2rnhT}[x, {p,p}] - --_lx, lx,p]], (20)

can be considered a special case of the Dekker master equation, with the D_ n terms equal to zero

(which Dekker has argued should be the case) and an additional low momentum approximation

which ignores the D_x term. With this type of special case in mind, we can construct a low

momentum approximation for the new model which includes only the decoherence and dissipation
terms:

ALLo] .... fddk_a_(p eik.xpe_ik.x ) ]ddEt, Re(a(k)*_(k))h ((k.p, eik'xfl_-ik'x}). (21)

This would seem to be a likely starting point for applications of this model. However, this

approximation is not a positive form for the dynamics.

Finally, I would like to look at the Wigner representation of the new model, which has some

interesting features. If we expand the terms of the evolution equation in powers of h (in the same

manner as is typically done with the potential),

W(q,p) -

+

+

rnO-q (pW) + (V'(q)W) +

A (pW) +,=,_(h)_' (2n + 1)! ] Op _+1

w + F_,(h) dk (2n + 2)! Op
n=l

oo (h)_(_l)n2_2n _+1
V (2'_+1) " W

(2n)! 0p 2"+'
n----1

--W

02 o_ (f Im(a" f_)k2"+2) O 02"+1+ (D_:p + Dr.)-_W + _(h) _+t dk (2n + 1)! OqOpa.+l
n=l

+ Dxx-_q 2W + ,:l)-_(h)2n-1 dk (2n)! OP----gk _ _qq2 + p2 W,

W

(22)

the lowest order terms correspond exactly to the Wigner representation of the Dekker equation.

The Wiguer representation of the Dekker equation is a standard classical type of diffusion equa-

tion. This illustrates the idea that the "classical" nature of the system emerges when coherent

superpositions are not important in the dynamics. In this case, the relevant superpositions are
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betweendifferent locations separatedby distanceson the order of the environment correlation
length.

The convolution theorem can also be used to write down the Wigner representationof the
evolution:

2 t"

W(q,p) = (Hamiltonian terms)- -_ ] dI](p - _t)W(q,p - id) IdRe[a* (h_)

0
Oq / dp'W(q,p - p,)ldIm[a" h 2

(-_-._q2 + ?_, )W(q,p- p').(23)

One apparent effect in the new model is a spreading induced by these convolution terms.

In summary, a new phenomenological master equation for ohmic dissipation and decoherence

has been constructed which has completely positive dynamics. The new model has the features

expected from local coupling to a homogeneous environment: specifically, the evolution is istropic

and translationally invariant. Spatial correlations of the environment appear explicitly in the

models. The new model also includes previous results as low length scale approximations.
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